Envelope Leakage

Addressing Envelope Leakage for Enhanced Building Performance

Envelope leakage refers to the uncontrolled movement of air through the building envelope, leading to energy losses, draughts, and reduced indoor air quality. Explore how to address envelope leakage through air sealing measures and airtightness testing for improved building performance.

Envelope leakage, also known as building envelope leakage or air leakage, refers to the uncontrolled movement of air through the building envelope. It occurs when outdoor air infiltrates into the building or conditioned indoor air escapes to the outside through gaps, cracks, joints, or other openings in the building’s exterior.

Envelope leakage is a common issue that can have significant impacts on energy efficiency, indoor comfort, and indoor air quality. It can result in energy losses, increased heating and cooling demands, drafts, temperature variations, and the infiltration of outdoor pollutants, allergens, and moisture.

The building envelope consists of various components such as walls, roofs, floors, windows, and doors, which together form the barrier between the interior and exterior environments. However, these components may have inherent or developed weaknesses that allow air to pass through, leading to envelope leakage.

Addressing envelope leakage involves implementing air sealing measures to minimize or eliminate the uncontrolled air movement. This includes sealing gaps, cracks, joints, and penetrations using air barrier materials, tapes, sealants, gaskets, and other appropriate techniques.

Airtightness testing, such as blower door tests, is often conducted to assess and quantify envelope leakage. These tests involve pressurising or depressurising the building and measuring the airflow rate required to maintain a specific pressure difference. The results provide valuable information about the overall airtightness of the building envelope and help identify areas of concern that require attention.

By reducing envelope leakage, building owners and professionals can improve energy efficiency, minimize heating and cooling loads, enhance indoor comfort by reducing drafts and temperature variations, and ensure better indoor air quality by controlling the infiltration of outdoor pollutants, allergens, and moisture.

Penicillium Mould

Penicillium mould, often encountered in various corners of the United Kingdom, is a fascinating and diverse group of fungi. Its presence can be seen in natural environments, on the shelves of cheese shops, and even within the walls of homes. In this article, we delve into the multifaceted world of Penicillium mould, exploring its various species, its contributions to both science and gastronomy, and the importance of managing its presence in indoor spaces.

Sound Masking

Sound masking is a technology used to introduce a controlled level of ambient noise in indoor spaces, creating acoustic privacy and reducing the intelligibility of conversations. It is commonly applied in open-plan offices, healthcare facilities, and other environments where confidentiality and concentration are crucial.

Sound Power Level

Sound power level quantifies the total acoustic energy emitted by a source. Explore how sound power level is measured, its significance in noise control, and its role in evaluating the acoustic characteristics of products and machinery.

Leakage Pathway

Leakage pathways represent openings and gaps that compromise a building’s airtightness. Explore how identifying and addressing these pathways improves energy efficiency, indoor comfort, and indoor air quality. Learn about effective sealing techniques and building diagnostic approaches.