Air Changes per Hour at 50 Pascals (ACH50)

Assessing Building Air Tightness with Air Changes per Hour at 50 Pascals (ACH50)

Air Changes per Hour at 50 Pascals (ACH50) quantifies building air tightness under standardized test conditions. Discover how it helps evaluate energy efficiency, identify air leakage, and guide air sealing efforts for improved building performance.

Air Changes per Hour at 50 Pascals (ACH50) is a metric used to measure the air tightness and infiltration rate of a building under a standardized pressure difference of 50 Pascals (Pa). It quantifies the amount of air that infiltrates or leaks into or out of a building when subjected to a pressure differential of 50 Pa.

The ACH50 value indicates how many times the total volume of air within a building would be exchanged with outdoor air per hour at a pressure difference of 50 Pa. It is commonly used in blower door tests, where a calibrated fan is used to pressurise or depressurise the building to create the desired pressure difference.

The ACH50 value provides insight into the level of air leakage in a building’s envelope. It helps evaluate the building’s airtightness and the potential for energy losses due to air infiltration or exfiltration. Lower ACH50 values indicate better air tightness and reduced energy loss.

ACH50 values are typically used in energy efficiency assessments, building performance evaluations, and energy code compliance. They are also useful for identifying areas of air leakage and guiding air sealing efforts to improve energy efficiency and indoor comfort.

It’s important to note that ACH50 represents the building’s air tightness under specific test conditions and does not account for natural ventilation or normal operating conditions. Therefore, it is not directly comparable to ACH values measured under natural conditions.

Air Permeability

Air permeability measures a building’s ability to prevent uncontrolled air leakage. Explore the significance of air permeability in maintaining energy efficiency, indoor air quality, and thermal comfort in residential and commercial structures.

Net Zero Carbon

Net Zero Carbon is a climate goal to balance carbon emissions with removals. Learn about the importance of Net Zero Carbon, strategies to achieve it, and its role in combatting climate change and building a sustainable future.

Annual Fuel Utilisation Efficiency (AFUE)

Annual Fuel Utilisation Efficiency (AFUE) is a measure of how efficiently a heating system converts fuel into heat. Learn how AFUE ratings work, their significance in choosing heating systems, and their role in reducing energy consumption and costs.

Sound Intensity – Measuring Sound Energy

Sound Intensity is a measure of the amount of sound energy passing through a unit area in a given direction. It helps quantify the strength or power of a sound wave and is vital in various applications, including acoustics and engineering.