Air Change Rate (ACHnat)

Assessing Natural Air Exchange with the Air Change Rate (ACHnat)

The Air Change Rate (ACHnat) measures the natural air exchange in a building, influencing indoor air quality and ventilation effectiveness. Explore how it is calculated, its impact on energy efficiency and comfort, and its role in achieving a healthy indoor environment.

The Air Change Rate (ACHnat) refers to the number of times that the entire volume of air within a space is replaced with fresh outdoor air per hour under natural conditions, without mechanical ventilation or air conditioning systems operating. It is a measure used to assess the natural ventilation effectiveness and air exchange rate of a building or space.

The ACHnat is influenced by factors such as building design, air leakage, window openings, infiltration, and outdoor weather conditions. It is an important parameter in evaluating indoor air quality and ventilation effectiveness, particularly in spaces where mechanical ventilation systems may be limited or absent.

A higher ACHnat indicates a higher rate of natural air exchange, which can help dilute indoor pollutants and improve indoor air quality. However, excessive air changes may also result in energy losses and discomfort due to temperature fluctuations and draughts. Achieving an optimal balance is crucial to ensure both good indoor air quality and energy efficiency.

The ACHnat can be calculated by dividing the airflow rate (in cubic meters per hour or cubic feet per minute) between the indoor and outdoor environments by the volume of the space (in cubic meters or cubic feet). It provides a quantitative measure of the natural ventilation capacity and the potential for air exchange in a building or space.

Understanding the ACHnat can help building professionals make informed decisions regarding natural ventilation strategies, the need for mechanical ventilation systems, and the overall indoor environmental quality of a building.

Airflow Capture Hood

An Airflow Capture Hood is a device used to measure and quantify airflow rates in HVAC systems, enabling assessment of system performance and optimisation of air distribution. Explore its features, applications, and benefits for optimal system operation.

Approved Document N

Stay compliant with glazing safety regulations outlined in Approved Document N. Guidelines for building design, construction, and safety measures related to impact, opening, and cleaning of glazing to prevent accidents and ensure occupant safety.

Heating Demand

Heating demand represents the energy required to maintain comfortable indoor temperatures during colder periods. Learn about factors influencing heating demand, energy-efficient solutions, and how optimising heating demand reduces energy consumption and environmental impact.

Airtightness Verification

Airtightness Verification involves testing and measuring the level of airtightness achieved in buildings. Through specialised equipment and assessments, it helps assess the effectiveness of air sealing measures, identify air leakage points, and ensure compliance with energy efficiency requirements. Ensure optimal building performance and energy savings through airtightness verification.