Exfiltration

Managing Air Leakage through Exfiltration

Exfiltration, the unintended movement of air from inside to outside, impacts building energy efficiency. Learn strategies to manage air leakage and improve the performance of your building envelope.

Exfiltration refers to the unwanted movement of air from the conditioned interior of a building to the exterior. It occurs through leaks, gaps, or openings in the building envelope, allowing conditioned air to escape and unconditioned air to enter. Understanding and addressing exfiltration is crucial for improving building energy efficiency and occupant comfort.

In this comprehensive guide, we explore the causes and consequences of exfiltration. We discuss the factors that contribute to air leakage, such as poorly sealed windows and doors, gaps in walls or ceilings, and improperly installed insulation. By identifying these sources of exfiltration, you can take steps to mitigate air leakage and improve the overall performance of the building envelope.

Discover strategies to manage and reduce exfiltration. Proper air sealing techniques, including weatherstripping, caulking, and the use of air barriers, can significantly minimise air leakage and improve energy efficiency. We discuss the importance of comprehensive air sealing measures throughout the building envelope, including around windows, doors, electrical outlets, and other potential sources of leaks.

Additionally, we explore the benefits of conducting a blower door test to assess the level of exfiltration in a building. This test helps identify areas of high air leakage and provides valuable data for targeted air sealing efforts. By addressing these areas, you can enhance energy efficiency, reduce heating and cooling costs, and create a more comfortable indoor environment.

We also highlight the importance of proper ventilation in managing exfiltration. While reducing air leakage is essential for energy conservation, it is equally important to ensure adequate ventilation to maintain indoor air quality. We discuss the role of balanced ventilation systems, including mechanical ventilation and controlled airflow, in achieving a healthy and efficient indoor environment.

By understanding and addressing exfiltration, you can improve building energy efficiency, reduce energy waste, and enhance occupant comfort. Explore the resources and insights provided in this guide to gain a comprehensive understanding of exfiltration and its management strategies. Take steps towards a more airtight and energy-efficient building envelope.

SAP Assessment

The Standard Assessment Procedure (SAP) is a tool used to assess the energy performance of buildings. Explore how SAP assessments work, their role in energy efficiency, and their significance in building regulations and sustainability.

Smoke Test

Discover the versatility of smoke tests in evaluating airflow patterns, detecting leaks, and assessing ventilation. This highly effective testing method provides visual insights and helps address airflow and leak-related issues for improved system performance and energy efficiency.

Sound Transmission Class (STC)

Sound Transmission Class (STC) is a rating system that quantifies how effectively a building partition, such as a wall or door, reduces the transmission of airborne sound. Understanding STC is essential for designing acoustically efficient spaces.

Stachybotrys Mould

Stachybotrys mould, commonly referred to as “black mould,” is a type of fungus that has garnered attention for its potential health risks and presence in indoor environments in the United Kingdom. In this article, we explore Stachybotrys mould, its characteristics, the concerns surrounding it, and ways to manage its presence in the UK.