Air Changes per Hour at 50 Pascals (ACH50)

Assessing Building Air Tightness with Air Changes per Hour at 50 Pascals (ACH50)

Air Changes per Hour at 50 Pascals (ACH50) quantifies building air tightness under standardized test conditions. Discover how it helps evaluate energy efficiency, identify air leakage, and guide air sealing efforts for improved building performance.

Air Changes per Hour at 50 Pascals (ACH50) is a metric used to measure the air tightness and infiltration rate of a building under a standardized pressure difference of 50 Pascals (Pa). It quantifies the amount of air that infiltrates or leaks into or out of a building when subjected to a pressure differential of 50 Pa.

The ACH50 value indicates how many times the total volume of air within a building would be exchanged with outdoor air per hour at a pressure difference of 50 Pa. It is commonly used in blower door tests, where a calibrated fan is used to pressurise or depressurise the building to create the desired pressure difference.

The ACH50 value provides insight into the level of air leakage in a building’s envelope. It helps evaluate the building’s airtightness and the potential for energy losses due to air infiltration or exfiltration. Lower ACH50 values indicate better air tightness and reduced energy loss.

ACH50 values are typically used in energy efficiency assessments, building performance evaluations, and energy code compliance. They are also useful for identifying areas of air leakage and guiding air sealing efforts to improve energy efficiency and indoor comfort.

It’s important to note that ACH50 represents the building’s air tightness under specific test conditions and does not account for natural ventilation or normal operating conditions. Therefore, it is not directly comparable to ACH values measured under natural conditions.

Air Barrier

An Air Barrier System restricts uncontrolled air movement in buildings, improving energy efficiency and indoor comfort. Discover the materials, installation techniques, and benefits of an effective air barrier system for enhanced building performance.

A-weighted Sound Level (dBA)

Acoustic Impedance is a measure of the resistance that a material or medium presents to the transmission of sound waves. It plays a crucial role in understanding the interaction of sound with surfaces and boundaries in acoustics and ultrasound imaging.

Energy Efficiency

Energy efficiency is the key to a sustainable future. Discover its importance, benefits, and strategies for reducing energy consumption. Embrace energy-efficient technologies and practices to maximise efficiency, save money, and contribute to a greener world.

Heat Recovery System

A heat recovery system captures and reuses waste heat from various processes. Learn about its applications, benefits, and how it helps improve energy efficiency, reduce costs, and lower environmental impact in residential and industrial settings.